Paper ID: 2410.01816
Automatic Scene Generation: State-of-the-Art Techniques, Models, Datasets, Challenges, and Future Prospects
Awal Ahmed Fime, Saifuddin Mahmud, Arpita Das, Md. Sunzidul Islam, Hong-Hoon Kim
Automatic scene generation is an essential area of research with applications in robotics, recreation, visual representation, training and simulation, education, and more. This survey provides a comprehensive review of the current state-of-the-arts in automatic scene generation, focusing on techniques that leverage machine learning, deep learning, embedded systems, and natural language processing (NLP). We categorize the models into four main types: Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Transformers, and Diffusion Models. Each category is explored in detail, discussing various sub-models and their contributions to the field. We also review the most commonly used datasets, such as COCO-Stuff, Visual Genome, and MS-COCO, which are critical for training and evaluating these models. Methodologies for scene generation are examined, including image-to-3D conversion, text-to-3D generation, UI/layout design, graph-based methods, and interactive scene generation. Evaluation metrics such as Frechet Inception Distance (FID), Kullback-Leibler (KL) Divergence, Inception Score (IS), Intersection over Union (IoU), and Mean Average Precision (mAP) are discussed in the context of their use in assessing model performance. The survey identifies key challenges and limitations in the field, such as maintaining realism, handling complex scenes with multiple objects, and ensuring consistency in object relationships and spatial arrangements. By summarizing recent advances and pinpointing areas for improvement, this survey aims to provide a valuable resource for researchers and practitioners working on automatic scene generation.
Submitted: Sep 14, 2024