Paper ID: 2410.02963
Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning
Shouthiri Partheepan, Farzad Sanati, Jahan Hassan
Bushfire is one of the major natural disasters that cause huge losses to livelihoods and the environment. Understanding and analyzing the severity of bushfires is crucial for effective management and mitigation strategies, helping to prevent the extensive damage and loss caused by these natural disasters. This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years, combining remote sensing data and machine learning techniques to predict future fire trends. By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model using XGBoost. The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems. By analyzing historical trends and integrating factors such as population density and vegetation cover, we identify areas at high risk of future severe bushfires. Additionally, this research identifies key regions at risk, providing data-driven recommendations for targeted firefighting efforts. The findings contribute valuable insights into fire management strategies, enhancing resilience to future fire events in Australia. Also, we propose future work on developing a UAV-based swarm coordination model to enhance fire prediction in real-time and firefighting capabilities in the most vulnerable regions.
Submitted: Sep 18, 2024