Paper ID: 2410.03054
CLIP-Clique: Graph-based Correspondence Matching Augmented by Vision Language Models for Object-based Global Localization
Shigemichi Matsuzaki, Kazuhito Tanaka, Kazuhiro Shintani
This letter proposes a method of global localization on a map with semantic object landmarks. One of the most promising approaches for localization on object maps is to use semantic graph matching using landmark descriptors calculated from the distribution of surrounding objects. These descriptors are vulnerable to misclassification and partial observations. Moreover, many existing methods rely on inlier extraction using RANSAC, which is stochastic and sensitive to a high outlier rate. To address the former issue, we augment the correspondence matching using Vision Language Models (VLMs). Landmark discriminability is improved by VLM embeddings, which are independent of surrounding objects. In addition, inliers are estimated deterministically using a graph-theoretic approach. We also incorporate pose calculation using the weighted least squares considering correspondence similarity and observation completeness to improve the robustness. We confirmed improvements in matching and pose estimation accuracy through experiments on ScanNet and TUM datasets.
Submitted: Oct 4, 2024