Paper ID: 2410.03858
Unsupervised Prior Learning: Discovering Categorical Pose Priors from Videos
Ziyu Wang, Shuangpeng Han, Mike Zheng Shou, Mengmi Zhang
A prior represents a set of beliefs or assumptions about a system, aiding inference and decision-making. In this work, we introduce the challenge of unsupervised prior learning in pose estimation, where AI models learn pose priors of animate objects from videos in a self-supervised manner. These videos present objects performing various actions, providing crucial information about their keypoints and connectivity. While priors are effective in pose estimation, acquiring them can be difficult. We propose a novel method, named Pose Prior Learner (PPL), to learn general pose priors applicable to any object category. PPL uses a hierarchical memory to store compositional parts of prototypical poses, from which we distill a general pose prior. This prior enhances pose estimation accuracy through template transformation and image reconstruction. PPL learns meaningful pose priors without any additional human annotations or interventions, outperforming competitive baselines on both human and animal pose estimation datasets. Notably, our experimental results reveal the effectiveness of PPL using learnt priors for pose estimation on occluded images. Through iterative inference, PPL leverages priors to refine estimated poses, regressing them to any prototypical poses stored in memory. Our code, model, and data will be publicly available.
Submitted: Oct 4, 2024