Paper ID: 2410.05481

fPLSA: Learning Semantic Structures in Document Collections Using Foundation Models

Weijia Xu, Nebojsa Jojic, Nicolas Le Roux

Humans have the ability to learn new tasks by inferring high-level concepts from existing solution, then manipulating these concepts in lieu of the raw data. Can we automate this process by deriving latent semantic structures in a document collection using foundation models? We introduce fPLSA, a foundation-model-based Probabilistic Latent Semantic Analysis (PLSA) method that iteratively clusters and tags document segments based on document-level contexts. These tags can be used to model the structure of given documents and for hierarchical sampling of new texts. Our experiments on story writing, math, and multi-step reasoning datasets demonstrate that fPLSA tags help reconstruct the original texts better than existing tagging methods. Moreover, when used for hierarchical sampling, fPLSA produces more diverse outputs with a higher likelihood of hitting the correct answer than direct sampling and hierarchical sampling with existing tagging methods.

Submitted: Oct 7, 2024