Paper ID: 2410.05721
Mero Nagarikta: Advanced Nepali Citizenship Data Extractor with Deep Learning-Powered Text Detection and OCR
Sisir Dhakal, Sujan Sigdel, Sandesh Prasad Paudel, Sharad Kumar Ranabhat, Nabin Lamichhane
Transforming text-based identity documents, such as Nepali citizenship cards, into a structured digital format poses several challenges due to the distinct characteristics of the Nepali script and minor variations in print alignment and contrast across different cards. This work proposes a robust system using YOLOv8 for accurate text object detection and an OCR algorithm based on Optimized PyTesseract. The system, implemented within the context of a mobile application, allows for the automated extraction of important textual information from both the front and the back side of Nepali citizenship cards, including names, citizenship numbers, and dates of birth. The final YOLOv8 model was accurate, with a mean average precision of 99.1% for text detection on the front and 96.1% on the back. The tested PyTesseract optimized for Nepali characters outperformed the standard OCR regarding flexibility and accuracy, extracting text from images with clean and noisy backgrounds and various contrasts. Using preprocessing steps such as converting the images into grayscale, removing noise from the images, and detecting edges further improved the system's OCR accuracy, even for low-quality photos. This work expands the current body of research in multilingual OCR and document analysis, especially for low-resource languages such as Nepali. It emphasizes the effectiveness of combining the latest object detection framework with OCR models that have been fine-tuned for practical applications.
Submitted: Oct 8, 2024