Paper ID: 2410.06804
The Clear Sky Corridor: Insights Towards Aerosol Formation in Exoplanets Using An AI-based Survey of Exoplanet Atmospheres
Reza Ashtari, Kevin B. Stevenson, David Sing, Mercedes Lopez-Morales, Munazza K. Alam, Nikolay K. Nikolov, Thomas M. Evans-Soma
Producing optimized and accurate transmission spectra of exoplanets from telescope data has traditionally been a manual and labor-intensive procedure. Here we present the results of the first attempt to improve and standardize this procedure using artificial intelligence (AI) based processing of light curves and spectroscopic data from transiting exoplanets observed with the Hubble Space Telescope's (HST) Wide Field Camera 3 (WFC3) instrument. We implement an AI-based parameter optimizer that autonomously operates the Eureka pipeline to produce homogeneous transmission spectra of publicly available HST WFC3 datasets, spanning exoplanet types from hot Jupiters to sub-Neptunes. Surveying 43 exoplanets with temperatures between 280 and 2580 Kelvin, we confirm modeled relationships between the amplitude of the water band at 1.4um in hot Jupiters and their equilibrium temperatures. We also identify a similar, novel trend in Neptune/sub-Neptune atmospheres, but shifted to cooler temperatures. Excitingly, a planet mass versus equilibrium temperature diagram reveals a "Clear Sky Corridor," where planets between 700 and 1700 Kelvin (depending on the mass) show stronger 1.4um H2O band measurements. This novel trend points to metallicity as a potentially important driver of aerosol formation. As we unveil and include these new discoveries into our understanding of aerosol formation, we enter a thrilling future for the study of exoplanet atmospheres. With HST sculpting this foundational understanding for aerosol formation in various exoplanet types, ranging from Jupiters to sub-Neptunes, we present a compelling platform for the James Webb Space Telescope (JWST) to discover similar atmospheric trends for more planets across a broader wavelength range.
Submitted: Oct 9, 2024