Paper ID: 2410.07713
A Hate Speech Moderated Chat Application: Use Case for GDPR and DSA Compliance
Jan Fillies, Theodoros Mitsikas, Ralph Schäfermeier, Adrian Paschke
The detection of hate speech or toxic content online is a complex and sensitive issue. While the identification itself is highly dependent on the context of the situation, sensitive personal attributes such as age, language, and nationality are rarely available due to privacy concerns. Additionally, platforms struggle with a wide range of local jurisdictions regarding online hate speech and the evaluation of content based on their internal ethical norms. This research presents a novel approach that demonstrates a GDPR-compliant application capable of implementing legal and ethical reasoning into the content moderation process. The application increases the explainability of moderation decisions by utilizing user information. Two use cases fundamental to online communication are presented and implemented using technologies such as GPT-3.5, Solid Pods, and the rule language Prova. The first use case demonstrates the scenario of a platform aiming to protect adolescents from potentially harmful content by limiting the ability to post certain content when minors are present. The second use case aims to identify and counter problematic statements online by providing counter hate speech. The counter hate speech is generated using personal attributes to appeal to the user. This research lays the groundwork for future DSA compliance of online platforms. The work proposes a novel approach to reason within different legal and ethical definitions of hate speech and plan the fitting counter hate speech. Overall, the platform provides a fitted protection to users and a more explainable and individualized response. The hate speech detection service, the chat platform, and the reasoning in Prova are discussed, and the potential benefits for content moderation and algorithmic hate speech detection are outlined. A selection of important aspects for DSA compliance is outlined.
Submitted: Oct 10, 2024