Paper ID: 2410.19764

Unraveling Movie Genres through Cross-Attention Fusion of Bi-Modal Synergy of Poster

Utsav Kumar Nareti, Chandranath Adak, Soumi Chattopadhyay, Pichao Wang

Movie posters are not just decorative; they are meticulously designed to capture the essence of a movie, such as its genre, storyline, and tone/vibe. For decades, movie posters have graced cinema walls, billboards, and now our digital screens as a form of digital posters. Movie genre classification plays a pivotal role in film marketing, audience engagement, and recommendation systems. Previous explorations into movie genre classification have been mostly examined in plot summaries, subtitles, trailers and movie scenes. Movie posters provide a pre-release tantalizing glimpse into a film's key aspects, which can ignite public interest. In this paper, we presented the framework that exploits movie posters from a visual and textual perspective to address the multilabel movie genre classification problem. Firstly, we extracted text from movie posters using an OCR and retrieved the relevant embedding. Next, we introduce a cross-attention-based fusion module to allocate attention weights to visual and textual embedding. In validating our framework, we utilized 13882 posters sourced from the Internet Movie Database (IMDb). The outcomes of the experiments indicate that our model exhibited promising performance and outperformed even some prominent contemporary architectures.

Submitted: Oct 12, 2024