Paper ID: 2410.19784
Enhancing Apple's Defect Classification: Insights from Visible Spectrum and Narrow Spectral Band Imaging
Omar Coello, Moisés Coronel, Darío Carpio, Boris Vintimilla, Luis Chuquimarca
This study addresses the classification of defects in apples as a crucial measure to mitigate economic losses and optimize the food supply chain. An innovative approach is employed that integrates images from the visible spectrum and 660 nm spectral wavelength to enhance accuracy and efficiency in defect classification. The methodology is based on the use of Single-Input and Multi-Inputs convolutional neural networks (CNNs) to validate the proposed strategies. Steps include image acquisition and preprocessing, classification model training, and performance evaluation. Results demonstrate that defect classification using the 660 nm spectral wavelength reveals details not visible in the entire visible spectrum. It is seen that the use of the appropriate spectral range in the classification process is slightly superior to the entire visible spectrum. The MobileNetV1 model achieves an accuracy of 98.80\% on the validation dataset versus the 98.26\% achieved using the entire visible spectrum. Conclusions highlight the potential to enhance the method by capturing images with specific spectral ranges using filters, enabling more effective network training for classification task. These improvements could further enhance the system's capability to identify and classify defects in apples.
Submitted: Oct 14, 2024