Paper ID: 2410.20268

Centaur: a foundation model of human cognition

Marcel Binz, Elif Akata, Matthias Bethge, Franziska Brändle, Fred Callaway, Julian Coda-Forno, Peter Dayan, Can Demircan, Maria K. Eckstein, Noémi Éltető, Thomas L. Griffiths, Susanne Haridi, Akshay K. Jagadish, Li Ji-An, Alexander Kipnis, Sreejan Kumar, Tobias Ludwig, Marvin Mathony, Marcelo Mattar, Alireza Modirshanechi, Surabhi S. Nath, Joshua C. Peterson, Milena Rmus, Evan M. Russek, Tankred Saanum, Natalia Scharfenberg, Johannes A. Schubert, Luca M. Schulze Buschoff, Nishad Singhi, Xin Sui, Mirko Thalmann, Fabian Theis, Vuong Truong, Vishaal Udandarao, Konstantinos Voudouris, Robert Wilson, Kristin Witte, Shuchen Wu, Dirk Wulff, Huadong Xiong, Eric Schulz

Establishing a unified theory of cognition has been a major goal of psychology. While there have been previous attempts to instantiate such theories by building computational models, we currently do not have one model that captures the human mind in its entirety. Here we introduce Centaur, a computational model that can predict and simulate human behavior in any experiment expressible in natural language. We derived Centaur by finetuning a state-of-the-art language model on a novel, large-scale data set called Psych-101. Psych-101 reaches an unprecedented scale, covering trial-by-trial data from over 60,000 participants performing over 10,000,000 choices in 160 experiments. Centaur not only captures the behavior of held-out participants better than existing cognitive models, but also generalizes to new cover stories, structural task modifications, and entirely new domains. Furthermore, we find that the model's internal representations become more aligned with human neural activity after finetuning. Taken together, Centaur is the first real candidate for a unified model of human cognition. We anticipate that it will have a disruptive impact on the cognitive sciences, challenging the existing paradigm for developing computational models.

Submitted: Oct 26, 2024