Paper ID: 2410.23737

A Non-Monolithic Policy Approach of Offline-to-Online Reinforcement Learning

JaeYoon Kim, Junyu Xuan, Christy Liang, Farookh Hussain

Offline-to-online reinforcement learning (RL) leverages both pre-trained offline policies and online policies trained for downstream tasks, aiming to improve data efficiency and accelerate performance enhancement. An existing approach, Policy Expansion (PEX), utilizes a policy set composed of both policies without modifying the offline policy for exploration and learning. However, this approach fails to ensure sufficient learning of the online policy due to an excessive focus on exploration with both policies. Since the pre-trained offline policy can assist the online policy in exploiting a downstream task based on its prior experience, it should be executed effectively and tailored to the specific requirements of the downstream task. In contrast, the online policy, with its immature behavioral strategy, has the potential for exploration during the training phase. Therefore, our research focuses on harmonizing the advantages of the offline policy, termed exploitation, with those of the online policy, referred to as exploration, without modifying the offline policy. In this study, we propose an innovative offline-to-online RL method that employs a non-monolithic exploration approach. Our methodology demonstrates superior performance compared to PEX.

Submitted: Oct 31, 2024