Paper ID: 2411.02412
Slicing for AI: An Online Learning Framework for Network Slicing Supporting AI Services
Menna Helmy, Alaa Awad Abdellatif, Naram Mhaisen, Amr Mohamed, Aiman Erbad
The forthcoming 6G networks will embrace a new realm of AI-driven services that requires innovative network slicing strategies, namely slicing for AI, which involves the creation of customized network slices to meet Quality of service (QoS) requirements of diverse AI services. This poses challenges due to time-varying dynamics of users' behavior and mobile networks. Thus, this paper proposes an online learning framework to optimize the allocation of computational and communication resources to AI services, while considering their unique key performance indicators (KPIs), such as accuracy, latency, and cost. We define a problem of optimizing the total accuracy while balancing conflicting KPIs, prove its NP-hardness, and propose an online learning framework for solving it in dynamic environments. We present a basic online solution and two variations employing a pre-learning elimination method for reducing the decision space to expedite the learning. Furthermore, we propose a biased decision space subset selection by incorporating prior knowledge to enhance the learning speed without compromising performance and present two alternatives of handling the selected subset. Our results depict the efficiency of the proposed solutions in converging to the optimal decisions, while reducing decision space and improving time complexity.
Submitted: Oct 20, 2024