Paper ID: 2411.02452

Goal-Oriented Semantic Communication for Wireless Visual Question Answering with Scene Graphs

Sige Liu, Nan Li, Yansha Deng

As demands for communication and computational capabilities escalate, traditional bit-oriented communication falls short of these stringent requirements, especially for mission-critical and computation-intensive applications. Visual Question Answering (VQA), a representative application, has adopted edge computing to mitigate local computational constraints and accelerate visual perception with natural language. However, it encounters significant communication challenges such as limited bandwidth, reduced transmission power, and increased noise levels, leading to considerable latency and reduced efficiency in image and question transmission. we propose a goal-oriented semantic communication (GSC) framework that focuses on effectively extracting and transmitting semantic information most relevant to the VQA goals, improving the answering accuracy and enhancing the effectiveness and efficiency. The objective is to maximize the answering accuracy, and we propose a scene graphs (SG)-based image semantic extraction and ranking approach to prioritize the semantic information based on the goal of questions. Experimental results demonstrate that our GSC framework improves answering accuracy by up to 59% under Rayleigh channels while reducing total latency by up to 65% compared to traditional bit-oriented transmission.

Submitted: Nov 3, 2024