Paper ID: 2411.09705
Residual Multi-Task Learner for Applied Ranking
Cong Fu, Kun Wang, Jiahua Wu, Yizhou Chen, Guangda Huzhang, Yabo Ni, Anxiang Zeng, Zhiming Zhou
Modern e-commerce platforms rely heavily on modeling diverse user feedback to provide personalized services. Consequently, multi-task learning has become an integral part of their ranking systems. However, existing multi-task learning methods encounter two main challenges: some lack explicit modeling of task relationships, resulting in inferior performance, while others have limited applicability due to being computationally intensive, having scalability issues, or relying on strong assumptions. To address these limitations and better fit our real-world scenario, pre-rank in Shopee Search, we introduce in this paper ResFlow, a lightweight multi-task learning framework that enables efficient cross-task information sharing via residual connections between corresponding layers of task networks. Extensive experiments on datasets from various scenarios and modalities demonstrate its superior performance and adaptability over state-of-the-art methods. The online A/B tests in Shopee Search showcase its practical value in large-scale industrial applications, evidenced by a 1.29% increase in OPU (order-per-user) without additional system latency. ResFlow is now fully deployed in the pre-rank module of Shopee Search. To facilitate efficient online deployment, we propose a novel offline metric Weighted Recall@K, which aligns well with our online metric OPU, addressing the longstanding online-offline metric misalignment issue. Besides, we propose to fuse scores from the multiple tasks additively when ranking items, which outperforms traditional multiplicative fusion. The code is released at this https URL
Submitted: Oct 30, 2024