Paper ID: 2411.14574
SRSA: A Cost-Efficient Strategy-Router Search Agent for Real-world Human-Machine Interactions
Yaqi Wang, Haipei Xu
Recently, as Large Language Models (LLMs) have shown impressive emerging capabilities and gained widespread popularity, research on LLM-based search agents has proliferated. In real-world situations, users often input contextual and highly personalized queries to chatbots, challenging LLMs to capture context and generate appropriate answers. However, much of the prior research has not focused specifically on authentic human-machine dialogue scenarios. It also ignores the important balance between response quality and computational cost by forcing all queries to follow the same agent process. To address these gaps, we propose a Strategy-Router Search Agent (SRSA), routing different queries to appropriate search strategies and enabling fine-grained serial searches to obtain high-quality results at a relatively low cost. To evaluate our work, we introduce a new dataset, Contextual Query Enhancement Dataset (CQED), comprising contextual queries to simulate authentic and daily interactions between humans and chatbots. Using LLM-based automatic evaluation metrics, we assessed SRSA's performance in terms of informativeness, completeness, novelty, and actionability. To conclude, SRSA provides an approach that resolves the issue of simple serial searches leading to degenerate answers for lengthy and contextual queries, effectively and efficiently parses complex user queries, and generates more comprehensive and informative responses without fine-tuning an LLM.
Submitted: Nov 21, 2024