Paper ID: 2411.15596
Comparative Analysis of Resource-Efficient CNN Architectures for Brain Tumor Classification
Md Ashik Khan, Rafath Bin Zafar Auvee
Accurate brain tumor classification in MRI images is critical for timely diagnosis and treatment planning. While deep learning models like ResNet-18, VGG-16 have shown high accuracy, they often come with increased complexity and computational demands. This study presents a comparative analysis of effective yet simple Convolutional Neural Network (CNN) architecture and pre-trained ResNet18, and VGG16 model for brain tumor classification using two publicly available datasets: Br35H:: Brain Tumor Detection 2020 and Brain Tumor MRI Dataset. The custom CNN architecture, despite its lower complexity, demonstrates competitive performance with the pre-trained ResNet18 and VGG16 models. In binary classification tasks, the custom CNN achieved an accuracy of 98.67% on the Br35H dataset and 99.62% on the Brain Tumor MRI Dataset. For multi-class classification, the custom CNN, with a slight architectural modification, achieved an accuracy of 98.09%, on the Brain Tumor MRI Dataset. Comparatively, ResNet18 and VGG16 maintained high performance levels, but the custom CNNs provided a more computationally efficient alternative. Additionally,the custom CNNs were evaluated using few-shot learning (0, 5, 10, 15, 20, 40, and 80 shots) to assess their robustness, achieving notable accuracy improvements with increased shots. This study highlights the potential of well-designed, less complex CNN architectures as effective and computationally efficient alternatives to deeper, pre-trained models for medical imaging tasks, including brain tumor classification. This study underscores the potential of custom CNNs in medical imaging tasks and encourages further exploration in this direction.
Submitted: Nov 23, 2024