Paper ID: 2411.17967

QuaLLM-Health: An Adaptation of an LLM-Based Framework for Quantitative Data Extraction from Online Health Discussions

Ramez Kouzy, Roxanna Attar-Olyaee, Michael K. Rooney, Comron J. Hassanzadeh, Junyi Jessy Li, Osama Mohamad

Health-related discussions on social media like Reddit offer valuable insights, but extracting quantitative data from unstructured text is challenging. In this work, we present an adapted framework from QuaLLM into QuaLLM-Health for extracting clinically relevant quantitative data from Reddit discussions about glucagon-like peptide-1 (GLP-1) receptor agonists using large language models (LLMs). We collected 410k posts and comments from five GLP-1-related communities using the Reddit API in July 2024. After filtering for cancer-related discussions, 2,059 unique entries remained. We developed annotation guidelines to manually extract variables such as cancer survivorship, family cancer history, cancer types mentioned, risk perceptions, and discussions with physicians. Two domain-experts independently annotated a random sample of 100 entries to create a gold-standard dataset. We then employed iterative prompt engineering with OpenAI's "GPT-4o-mini" on the gold-standard dataset to build an optimized pipeline that allowed us to extract variables from the large dataset. The optimized LLM achieved accuracies above 0.85 for all variables, with precision, recall and F1 score macro averaged > 0.90, indicating balanced performance. Stability testing showed a 95% match rate across runs, confirming consistency. Applying the framework to the full dataset enabled efficient extraction of variables necessary for downstream analysis, costing under $3 and completing in approximately one hour. QuaLLM-Health demonstrates that LLMs can effectively and efficiently extract clinically relevant quantitative data from unstructured social media content. Incorporating human expertise and iterative prompt refinement ensures accuracy and reliability. This methodology can be adapted for large-scale analysis of patient-generated data across various health domains, facilitating valuable insights for healthcare research.

Submitted: Nov 27, 2024