Paper ID: 2411.19019
Connectivity Preserving Decentralized UAV Swarm Navigation in Obstacle-laden Environments without Explicit Communication
Thiviyathinesvaran Palani, Hiroaki Fukushima, Shunsuke Izuhara
This paper presents a novel control method for a group of UAVs in obstacle-laden environments while preserving sensing network connectivity without data transmission between the UAVs. By leveraging constraints rooted in control barrier functions (CBFs), the proposed method aims to overcome the limitations, such as oscillatory behaviors and frequent constraint violations, of the existing method based on artificial potential fields (APFs). More specifically, the proposed method first determines desired control inputs by considering CBF-based constraints rather than repulsive APFs. The desired inputs are then minimally modified by solving a numerical optimization problem with soft constraints. In addition to the optimization-based method, we present an approximate method without numerical optimization. The effectiveness of the proposed methods is evaluated by extensive simulations to compare the performance of the CBF-based methods with an APF-based approach. Experimental results using real quadrotors are also presented.
Submitted: Nov 28, 2024