Paper ID: 2412.01860
Pairwise Discernment of AffectNet Expressions with ArcFace
Dylan Waldner, Shyamal Mitra
This study takes a preliminary step toward teaching computers to recognize human emotions through Facial Emotion Recognition (FER). Transfer learning is applied using ResNeXt, EfficientNet models, and an ArcFace model originally trained on the facial verification task, leveraging the AffectNet database, a collection of human face images annotated with corresponding emotions. The findings highlight the value of congruent domain transfer learning, the challenges posed by imbalanced datasets in learning facial emotion patterns, and the effectiveness of pairwise learning in addressing class imbalances to enhance model performance on the FER task.
Submitted: Dec 1, 2024