Paper ID: 2412.03771

Diffusion in Zero-Shot Learning for Environmental Audio

Ysobel Sims, Stephan Chalup, Alexandre Mendes

Zero-shot learning enables models to generalize to unseen classes by leveraging semantic information, bridging the gap between training and testing sets with non-overlapping classes. While much research has focused on zero-shot learning in computer vision, the application of these methods to environmental audio remains underexplored, with poor performance in existing studies. Generative methods, which have demonstrated success in computer vision, are notably absent from environmental audio zero-shot learning, where classification-based approaches dominate. To address this gap, this work investigates generative methods for zero-shot learning in environmental audio. Two successful generative models from computer vision are adapted: a cross-aligned and distribution-aligned variational autoencoder (CADA-VAE) and a leveraging invariant side generative adversarial network (LisGAN). Additionally, a novel diffusion model conditioned on class auxiliary data is introduced. The diffusion model generates synthetic data for unseen classes, which is combined with seen-class data to train a classifier. Experiments are conducted on two environmental audio datasets, ESC-50 and FSC22. Results show that the diffusion model significantly outperforms all baseline methods, achieving more than 25% higher accuracy on the ESC-50 test partition. This work establishes the diffusion model as a promising generative approach for zero-shot learning and introduces the first benchmark of generative methods for environmental audio zero-shot learning, providing a foundation for future research in the field. Code is provided at this https URL for the novel ZeroDiffusion method.

Submitted: Dec 4, 2024