Paper ID: 2412.08435
Proactive Model Adaptation Against Concept Drift for Online Time Series Forecasting
Lifan Zhao, Yanyan Shen
Time series forecasting always faces the challenge of concept drift, where data distributions evolve over time, leading to a decline in forecast model performance. Existing solutions are based on online learning, which continually organize recent time series observations as new training samples and update model parameters according to the forecasting feedback on recent data. However, they overlook a critical issue: obtaining ground-truth future values of each sample should be delayed until after the forecast horizon. This delay creates a temporal gap between the training samples and the test sample. Our empirical analysis reveals that the gap can introduce concept drift, causing forecast models to adapt to outdated concepts. In this paper, we present \textsc{Proceed}, a novel proactive model adaptation framework for online time series forecasting. \textsc{Proceed} first operates by estimating the concept drift between the recently used training samples and the current test sample. It then employs an adaptation generator to efficiently translate the estimated drift into parameter adjustments, proactively adapting the model to the test sample. To enhance the generalization capability of the framework, \textsc{Proceed} is trained on synthetic diverse concept drifts. We conduct extensive experiments on five real-world datasets across various forecast models. The empirical study demonstrates that our proposed \textsc{Proceed} brings more performance improvements than the state-of-the-art online learning methods, significantly facilitating forecast models' resilience against concept drifts.
Submitted: Dec 11, 2024