Paper ID: 2412.08628
EOV-Seg: Efficient Open-Vocabulary Panoptic Segmentation
Hongwei Niu, Jie Hu, Jianghang Lin, Shengchuan Zhang
Open-vocabulary panoptic segmentation aims to segment and classify everything in diverse scenes across an unbounded vocabulary. Existing methods typically employ two-stage or single-stage framework. The two-stage framework involves cropping the image multiple times using masks generated by a mask generator, followed by feature extraction, while the single-stage framework relies on a heavyweight mask decoder to make up for the lack of spatial position information through self-attention and cross-attention in multiple stacked Transformer blocks. Both methods incur substantial computational overhead, thereby hindering the efficiency of model inference. To fill the gap in efficiency, we propose EOV-Seg, a novel single-stage, shared, efficient, and spatial-aware framework designed for open-vocabulary panoptic segmentation. Specifically, EOV-Seg innovates in two aspects. First, a Vocabulary-Aware Selection (VAS) module is proposed to improve the semantic comprehension of visual aggregated features and alleviate the feature interaction burden on the mask decoder. Second, we introduce a Two-way Dynamic Embedding Experts (TDEE), which efficiently utilizes the spatial awareness capabilities of ViT-based CLIP backbone. To the best of our knowledge, EOV-Seg is the first open-vocabulary panoptic segmentation framework towards efficiency, which runs faster and achieves competitive performance compared with state-of-the-art methods. Specifically, with COCO training only, EOV-Seg achieves 24.2 PQ, 31.6 mIoU, and 12.7 FPS on the ADE20K dataset for panoptic and semantic segmentation tasks and the inference time of EOV-Seg is 4-21 times faster than state-of-the-art methods. Especially, equipped with ResNet-50 backbone, EOV-Seg runs 25 FPS with only 71M parameters on a single RTX 3090 GPU. Code is available at \url{this https URL}.
Submitted: Dec 11, 2024