Paper ID: 2412.09644

Combining knowledge graphs and LLMs for hazardous chemical information management and reuse

Marcos Da Silveira, Louis Deladiennee, Kheira Acem, Oona Freudenthal

Human health is increasingly threatened by exposure to hazardous substances, particularly persistent and toxic chemicals. The link between these substances, often encountered in complex mixtures, and various diseases are demonstrated in scientific studies. However, this information is scattered across several sources and hardly accessible by humans and machines. This paper evaluates current practices for publishing/accessing information on hazardous chemicals and proposes a novel platform designed to facilitate retrieval of critical chemical data in urgent situations. The platform aggregates information from multiple sources and organizes it into a structured knowledge graph. Users can access this information through a visual interface such as Neo4J Bloom and dashboards, or via natural language queries using a Chatbot. Our findings demonstrate a significant reduction in the time and effort required to access vital chemical information when datasets follow FAIR principles. Furthermore, we discuss the lessons learned from the development and implementation of this platform and provide recommendations for data owners and publishers to enhance data reuse and interoperability. This work aims to improve the accessibility and usability of chemical information by healthcare professionals, thereby supporting better health outcomes and informed decision-making in the face of patients exposed to chemical intoxication risks.

Submitted: Dec 10, 2024