Paper ID: 2412.11180

GNNs-to-MLPs by Teacher Injection and Dirichlet Energy Distillation

Ziang Zhou, Zhihao Ding, Jieming Shi, Qing Li, Shiqi Shen

Graph Neural Networks (GNNs) are fundamental to graph-based learning and excel in node classification tasks. However, GNNs suffer from scalability issues due to the need for multi-hop data during inference, limiting their use in latency-sensitive applications. Recent studies attempt to distill GNNs into multi-layer perceptrons (MLPs) for faster inference. They typically treat GNN and MLP models as single units for distillation, insufficiently utilizing the fine-grained knowledge within GNN layers. In this paper, we propose TINED, a novel method that distills GNNs to MLPs layer-wise through Teacher Injection with fine-tuning and Dirichlet Energy Distillation techniques. We analyze key operations in GNN layers, feature transformation (FT) and graph propagation (GP), and identify that an FT performs the same computation as a fully-connected (FC) layer in MLPs. Thus, we propose directly injecting valuable teacher parameters of an FT in a GNN into an FC layer of the student MLP, assisted by fine-tuning. In TINED, FC layers in an MLP mirror the order of the corresponding FTs and GPs in GNN. We provide a theoretical bound on the approximation of GPs. Moreover, we observe that in a GNN layer, FT and GP operations often have opposing smoothing effects: GP is aggressive, while FT is conservative, in smoothing. Using Dirichlet energy, we design a DE ratio to quantify these smoothing effects and propose Dirichlet Energy Distillation to distill these characteristics from GNN layers to MLP layers. Extensive experiments demonstrate that TINED achieves superior performance over GNNs and state-of-the-art distillation methods under various settings across seven datasets. The code is in supplementary material.

Submitted: Dec 15, 2024