Paper ID: 2412.12046
Artificial Intelligence in Traffic Systems
Ritwik Raj Saxena
Existing research on AI-based traffic management systems, utilizing techniques such as fuzzy logic, reinforcement learning, deep neural networks, and evolutionary algorithms, demonstrates the potential of AI to transform the traffic landscape. This article endeavors to review the topics where AI and traffic management intersect. It comprises areas like AI-powered traffic signal control systems, automatic distance and velocity recognition (for instance, in autonomous vehicles, hereafter AVs), smart parking systems, and Intelligent Traffic Management Systems (ITMS), which use data captured in real-time to keep track of traffic conditions, and traffic-related law enforcement and surveillance using AI. AI applications in traffic management cover a wide range of spheres. The spheres comprise, inter alia, streamlining traffic signal timings, predicting traffic bottlenecks in specific areas, detecting potential accidents and road hazards, managing incidents accurately, advancing public transportation systems, development of innovative driver assistance systems, and minimizing environmental impact through simplified routes and reduced emissions. The benefits of AI in traffic management are also diverse. They comprise improved management of traffic data, sounder route decision automation, easier and speedier identification and resolution of vehicular issues through monitoring the condition of individual vehicles, decreased traffic snarls and mishaps, superior resource utilization, alleviated stress of traffic management manpower, greater on-road safety, and better emergency response time.
Submitted: Dec 16, 2024