Paper ID: 2412.13790

Toward Efficient Data-Free Unlearning

Chenhao Zhang, Shaofei Shen, Weitong Chen, Miao Xu

Machine unlearning without access to real data distribution is challenging. The existing method based on data-free distillation achieved unlearning by filtering out synthetic samples containing forgetting information but struggled to distill the retaining-related knowledge efficiently. In this work, we analyze that such a problem is due to over-filtering, which reduces the synthesized retaining-related information. We propose a novel method, Inhibited Synthetic PostFilter (ISPF), to tackle this challenge from two perspectives: First, the Inhibited Synthetic, by reducing the synthesized forgetting information; Second, the PostFilter, by fully utilizing the retaining-related information in synthesized samples. Experimental results demonstrate that the proposed ISPF effectively tackles the challenge and outperforms existing methods.

Submitted: Dec 18, 2024