Paper ID: 2412.16443
Has LLM Reached the Scaling Ceiling Yet? Unified Insights into LLM Regularities and Constraints
Charles Luo
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their scalability raises a critical question: Have we reached the scaling ceiling? This paper addresses this pivotal question by developing a unified theoretical framework that integrates mathematical and statistical insights to explain the scaling dynamics of LLMs. We present: 1. Central Limit Theorem (CLT) for Hidden Representations: We show that noise in hidden representations scales inversely with context size, explaining stabilization effects and the limits of context length improvements. 2. Bias-Variance Decomposition: We decompose next-token prediction loss into irreducible entropy, capacity-driven bias, and finite sample variance, revealing trade-offs where scaling yields diminishing returns. 3. Emergent SNR Thresholds: By defining signal-to-noise ratio (SNR), we quantify how capabilities emerge abruptly once SNR surpasses a threshold, offering insights into when scaling becomes less effective. Through this framework, we conclude that while LLMs have not reached an absolute scaling ceiling, practical constraints are increasingly prominent: diminishing returns, resource inefficiencies, and data limitations. Future progress will require a shift from brute-force scaling to innovations in architecture, data quality, and training paradigms. This work provides a roadmap for guiding the efficient development of next-generation LLMs and advancing the field beyond traditional scaling strategies. Keywords: Large Language Models; Scaling Ceiling; Central Limit Theorem; Bias-Variance Trade-Off; Signal-to-Noise Ratio; Emergent Capabilities
Submitted: Dec 21, 2024