Paper ID: 2412.17176
WPMixer: Efficient Multi-Resolution Mixing for Long-Term Time Series Forecasting
Md Mahmuddun Nabi Murad, Mehmet Aktukmak, Yasin Yilmaz
Time series forecasting is crucial for various applications, such as weather forecasting, power load forecasting, and financial analysis. In recent studies, MLP-mixer models for time series forecasting have been shown as a promising alternative to transformer-based models. However, the performance of these models is still yet to reach its potential. In this paper, we propose Wavelet Patch Mixer (WPMixer), a novel MLP-based model, for long-term time series forecasting, which leverages the benefits of patching, multi-resolution wavelet decomposition, and mixing. Our model is based on three key components: (i) multi-resolution wavelet decomposition, (ii) patching and embedding, and (iii) MLP mixing. Multi-resolution wavelet decomposition efficiently extracts information in both the frequency and time domains. Patching allows the model to capture an extended history with a look-back window and enhances capturing local information while MLP mixing incorporates global information. Our model significantly outperforms state-of-the-art MLP-based and transformer-based models for long-term time series forecasting in a computationally efficient way, demonstrating its efficacy and potential for practical applications.
Submitted: Dec 22, 2024