Paper ID: 2412.18655

Simple is not Enough: Document-level Text Simplification using Readability and Coherence

Laura Vásquez-Rodríguez, Nhung T.H. Nguyen, Piotr Przybyła, Matthew Shardlow, Sophia Ananiadou

In this paper, we present the SimDoc system, a simplification model considering simplicity, readability, and discourse aspects, such as coherence. In the past decade, the progress of the Text Simplification (TS) field has been mostly shown at a sentence level, rather than considering paragraphs or documents, a setting from which most TS audiences would benefit. We propose a simplification system that is initially fine-tuned with professionally created corpora. Further, we include multiple objectives during training, considering simplicity, readability, and coherence altogether. Our contributions include the extension of professionally annotated simplification corpora by the association of existing annotations into (complex text, simple text, readability label) triples to benefit from readability during training. Also, we present a comparative analysis in which we evaluate our proposed models in a zero-shot, few-shot, and fine-tuning setting using document-level TS corpora, demonstrating novel methods for simplification. Finally, we show a detailed analysis of outputs, highlighting the difficulties of simplification at a document level.

Submitted: Dec 24, 2024