Paper ID: 2412.20409
Analytically Informed Inverse Kinematics Solution at Singularities
Andreas Mueller
Near kinematic singularities of a serial manipulator, the inverse kinematics (IK) problem becomes ill-conditioned, which poses computational problems for the numerical solution. Computational methods to tackle this issue are based on various forms of a pseudoinverse (PI) solution to the velocity IK problem. The damped least squares (DLS) method provides a robust solution with controllable convergence rate. However, at singularities, it may not even be possible to solve the IK problem using any PI solution when certain end-effector motions are prescribed. To overcome this problem, an analytically informed inverse kinematics (AI-IK) method is proposed. The key step of the method is an explicit description of the tangent aspect of singular motions (the analytic part) to deduce a perturbation that yields a regular configuration. The latter serves as start configuration for the iterative solution (the numeric part). Numerical results are reported for a 7-DOF Kuka iiwa.
Submitted: Dec 29, 2024