Paper ID: 2412.20521
Can Robots "Taste" Grapes? Estimating SSC with Simple RGB Sensors
Thomas Alessandro Ciarfuglia, Ionut Marian Motoi, Leonardo Saraceni, Daniele Nardi
In table grape cultivation, harvesting depends on accurately assessing fruit quality. While some characteristics, like color, are visible, others, such as Soluble Solid Content (SSC), or sugar content measured in degrees Brix ({\deg}Brix), require specific tools. SSC is a key quality factor that correlates with ripeness, but lacks a direct causal relationship with color. Hyperspectral cameras can estimate SSC with high accuracy under controlled laboratory conditions, but their practicality in field environments is limited. This study investigates the potential of simple RGB sensors under uncontrolled lighting to estimate SSC and color, enabling cost-effective, robot-assisted harvesting. Over the 2021 and 2022 summer seasons, we collected grape images with corresponding SSC and color labels to evaluate algorithmic solutions for SSC estimation on embedded devices commonly used in robotics and smartphones. Our results demonstrate that SSC can be estimated from visual appearance with human-like performance. We propose computationally efficient histogram-based methods for resource-constrained robots and deep learning approaches for more complex applications.
Submitted: Dec 29, 2024