Paper ID: 2501.00174
The Text Classification Pipeline: Starting Shallow going Deeper
Marco Siino, Ilenia Tinnirello, Marco La Cascia
Text Classification (TC) stands as a cornerstone within the realm of Natural Language Processing (NLP), particularly when viewed through the lens of computer science and engineering. The past decade has seen deep learning revolutionize TC, propelling advancements in text retrieval, categorization, information extraction, and summarization. The scholarly literature is rich with datasets, models, and evaluation criteria, with English being the predominant language of focus, despite studies involving Arabic, Chinese, Hindi, and others. The efficacy of TC models relies heavily on their ability to capture intricate textual relationships and nonlinear correlations, necessitating a comprehensive examination of the entire TC pipeline. This monograph provides an in-depth exploration of the TC pipeline, with a particular emphasis on evaluating the impact of each component on the overall performance of TC models. The pipeline includes state-of-the-art datasets, text preprocessing techniques, text representation methods, classification models, evaluation metrics, current results and future trends. Each chapter meticulously examines these stages, presenting technical innovations and significant recent findings. The work critically assesses various classification strategies, offering comparative analyses, examples, case studies, and experimental evaluations. These contributions extend beyond a typical survey, providing a detailed and insightful exploration of TC.
Submitted: Dec 30, 2024