Paper ID: 2501.02184

Model-Free and Real-Time Bioinspired Unicycle-Based Source Seeking: Differential Wheeled Robotic Experiments

Ahmed A. Elgohary, Sameh A. Eisa, Shivam Bajpai

Bioinspred robots aimed at source-seeking are often studied, and their controls designed, using unicycle modeling and formulation. This is true not only for model-based controllers, but also for model-free, real-time control methods such as extremum seeking control (ESC). In this paper, we propose a unicycle-based ESC design applicable to differential wheeled robots that: (1) is very simple design, based on one simple control-affine law, and without state integrators; (2) attenuates oscillations known to persist in ESC designs (i.e., fully stop at the source); and (3) operates in a model-free, real-time setting, tolerating environmental/sensor noise. We provide simulation and real-world robotic experimental results for fixed and moving light source seeking by a differential wheeled robot using our proposed design. Results indicate clear advantages of our proposed design when compared to the literature, including attenuation of undesired oscillations, improved convergence speed, and better handling of noise.

Submitted: Jan 4, 2025