Paper ID: 2501.05000
Load Forecasting for Households and Energy Communities: Are Deep Learning Models Worth the Effort?
Lukas Moosbrugger, Valentin Seiler, Philipp Wohlgenannt, Sebastian Hegenbart, Sashko Ristov, Peter Kepplinger
Accurate load forecasting is crucial for predictive control in many energy domain applications, with significant economic and ecological implications. To address these implications, this study provides an extensive benchmark of state-of-the-art deep learning models for short-term load forecasting in energy communities. Namely, LSTM, xLSTM, and Transformers are compared with benchmarks such as KNNs, synthetic load models, and persistence forecasting models. This comparison considers different scales of aggregation (e.g., number of household loads) and varying training data availability (e.g., training data time spans). Further, the impact of transfer learning from synthetic (standard) load profiles and the deep learning model size (i.e., parameter count) is investigated in terms of forecasting error. Implementations are publicly available and other researchers are encouraged to benchmark models using this framework. Additionally, a comprehensive case study, comprising an energy community of 50 households and a battery storage demonstrates the beneficial financial implications of accurate predictions. Key findings of this research include: (1) Simple persistence benchmarks outperform deep learning models for short-term load forecasting when the available training data is limited to six months or less; (2) Pretraining with publicly available synthetic load profiles improves the normalized Mean Absolute Error (nMAE) by an average of 1.28%pt during the first nine months of training data; (3) Increased aggregation significantly enhances the performance of deep learning models relative to persistence benchmarks; (4) Improved load forecasting, with an nMAE reduction of 1.1%pt, translates to an economic benefit of approximately 600EUR per year in an energy community comprising 50 households.
Submitted: Jan 9, 2025