Paper ID: 2501.05205

Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning

Xueyi Ke, Satoshi Tsutsui, Yayun Zhang, Bihan Wen

Infants develop complex visual understanding rapidly, even preceding of the acquisition of linguistic inputs. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al.,which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We introduce a training-free framework that can discover visual concept neurons hidden in the model's internal representations. Our findings show that these neurons can classify objects outside its original vocabulary. Furthermore, we compare the visual representations in infant-like models with those in moder computer vision models, such as CLIP or ImageNet pre-trained model, highlighting key similarities and differences. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant's visual and linguistic inputs.

Submitted: Jan 9, 2025