Paper ID: 2501.05242

Scaffold-SLAM: Structured 3D Gaussians for Simultaneous Localization and Photorealistic Mapping

Wen Tianci, Liu Zhiang, Lu Biao, Fang Yongchun

3D Gaussian Splatting (3DGS) has recently revolutionized novel view synthesis in the Simultaneous Localization and Mapping (SLAM). However, existing SLAM methods utilizing 3DGS have failed to provide high-quality novel view rendering for monocular, stereo, and RGB-D cameras simultaneously. Notably, some methods perform well for RGB-D cameras but suffer significant degradation in rendering quality for monocular cameras. In this paper, we present Scaffold-SLAM, which delivers simultaneous localization and high-quality photorealistic mapping across monocular, stereo, and RGB-D cameras. We introduce two key innovations to achieve this state-of-the-art visual quality. First, we propose Appearance-from-Motion embedding, enabling 3D Gaussians to better model image appearance variations across different camera poses. Second, we introduce a frequency regularization pyramid to guide the distribution of Gaussians, allowing the model to effectively capture finer details in the scene. Extensive experiments on monocular, stereo, and RGB-D datasets demonstrate that Scaffold-SLAM significantly outperforms state-of-the-art methods in photorealistic mapping quality, e.g., PSNR is 16.76% higher in the TUM RGB-D datasets for monocular cameras.

Submitted: Jan 9, 2025