Paper ID: 2501.06143
Multilingual Performance of a Multimodal Artificial Intelligence System on Multisubject Physics Concept Inventories
Gerd Kortemeyer, Marina Babayeva, Giulia Polverini, Bor Gregorcic, Ralf Widenhorn
We investigate the multilingual and multimodal performance of a large language model-based artificial intelligence (AI) system, GPT-4o, on a diverse set of physics concept inventories spanning multiple languages and subject areas. The inventories taken from the PhysPort website cover the classical physics topics of mechanics, electromagnetism, optics, and thermodynamics as well as relativity, quantum mechanics, astronomy, mathematics, and laboratory skills. Unlike previous text-only studies, we uploaded the inventories as images mirroring what a student would see on paper, assessing the system's multimodal functionality. The AI is prompted in English and autonomously chooses the language of its response - either remaining in the nominal language of the test, switching entirely to English, or mixing languages - revealing adaptive behavior dependent on linguistic complexity and data availability. Our results indicate some variation in performance across subject areas, with laboratory skills standing out as the area of poorest performance. Furthermore, the AI's performance on questions that require visual interpretation of images is worse than on purely text-based questions. Questions that are difficult for the AI tend to be that way invariably of the inventory language. We also find large variations in performance across languages, with some appearing to benefit substantially from language switching, a phenomenon similar to code-switching ofhuman speakers. Overall, comparing the obtained AI results to the existing literature, we find that the AI system outperforms average undergraduate students post-instruction in all subject areas but laboratory skills.
Submitted: Jan 10, 2025