Paper ID: 2501.07365

Multimodal semantic retrieval for product search

Dong Liu, Esther Lopez Ramos

Semantic retrieval (also known as dense retrieval) based on textual data has been extensively studied for both web search and product search application fields, where the relevance of a query and a potential target document is computed by their dense vector representation comparison. Product image is crucial for e-commence search interactions and is a key factor for customers at product explorations. But its impact for semantic retrieval has not been well studied yet. In this research, we build a multimodal representation for product items in e-commerece search in contrast to pure-text representation of products, and investigate the impact of such representations. The models are developed and evaluated on e-commerce datasets. We demonstrate that a multimodal representation scheme for a product can show improvement either on purchase recall or relevance accuracy in semantic retrieval. Additionally, we provide numerical analysis for exclusive matches retrieved by a multimodal semantic retrieval model versus a text-only semantic retrieval model, to demonstrate the validation of multimodal solutions.

Submitted: Jan 13, 2025