Paper ID: 2501.08053
Exploring Narrative Clustering in Large Language Models: A Layerwise Analysis of BERT
Awritrojit Banerjee, Achim Schilling, Patrick Krauss
This study investigates the internal mechanisms of BERT, a transformer-based large language model, with a focus on its ability to cluster narrative content and authorial style across its layers. Using a dataset of narratives developed via GPT-4, featuring diverse semantic content and stylistic variations, we analyze BERT's layerwise activations to uncover patterns of localized neural processing. Through dimensionality reduction techniques such as Principal Component Analysis (PCA) and Multidimensional Scaling (MDS), we reveal that BERT exhibits strong clustering based on narrative content in its later layers, with progressively compact and distinct clusters. While strong stylistic clustering might occur when narratives are rephrased into different text types (e.g., fables, sci-fi, kids' stories), minimal clustering is observed for authorial style specific to individual writers. These findings highlight BERT's prioritization of semantic content over stylistic features, offering insights into its representational capabilities and processing hierarchy. This study contributes to understanding how transformer models like BERT encode linguistic information, paving the way for future interdisciplinary research in artificial intelligence and cognitive neuroscience.
Submitted: Jan 14, 2025