Paper ID: 2502.09663 • Published Feb 12, 2025
DiffEx: Explaining a Classifier with Diffusion Models to Identify Microscopic Cellular Variations
Anis Bourou, Saranga Kingkor Mahanta, Thomas Boyer, Valérie Mezger, Auguste Genovesio
TL;DR
Get AI-generated summaries with premium
Get AI-generated summaries with premium
In recent years, deep learning models have been extensively applied to
biological data across various modalities. Discriminative deep learning models
have excelled at classifying images into categories (e.g., healthy versus
diseased, treated versus untreated). However, these models are often perceived
as black boxes due to their complexity and lack of interpretability, limiting
their application in real-world biological contexts. In biological research,
explainability is essential: understanding classifier decisions and identifying
subtle differences between conditions are critical for elucidating the effects
of treatments, disease progression, and biological processes. To address this
challenge, we propose DiffEx, a method for generating visually interpretable
attributes to explain classifiers and identify microscopic cellular variations
between different conditions. We demonstrate the effectiveness of DiffEx in
explaining classifiers trained on natural and biological images. Furthermore,
we use DiffEx to uncover phenotypic differences within microscopy datasets. By
offering insights into cellular variations through classifier explanations,
DiffEx has the potential to advance the understanding of diseases and aid drug
discovery by identifying novel biomarkers.