Paper ID: 2503.18817 • Published Mar 24, 2025
Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations
Jeonghyeon Kim, Sangheum Hwang
Seoul National University of Science and Technology
TL;DR
Get AI-generated summaries with premium
Get AI-generated summaries with premium
Prior research on out-of-distribution detection (OoDD) has primarily focused
on single-modality models. Recently, with the advent of large-scale pretrained
vision-language models such as CLIP, OoDD methods utilizing such multi-modal
representations through zero-shot and prompt learning strategies have emerged.
However, these methods typically involve either freezing the pretrained weights
or only partially tuning them, which can be suboptimal for downstream datasets.
In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve
notable OoDD performance. Despite some recent works demonstrating the impact of
fine-tuning methods for OoDD, there remains significant potential for
performance improvement. We investigate the limitation of na\"ive fine-tuning
methods, examining why they fail to fully leverage the pretrained knowledge.
Our empirical analysis suggests that this issue could stem from the modality
gap within in-distribution (ID) embeddings. To address this, we propose a
training objective that enhances cross-modal alignment by regularizing the
distances between image and text embeddings of ID data. This adjustment helps
in better utilizing pretrained textual information by aligning similar
semantics from different modalities (i.e., text and image) more closely in the
hyperspherical representation space. We theoretically demonstrate that the
proposed regularization corresponds to the maximum likelihood estimation of an
energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark
datasets, we show that our method, combined with post-hoc OoDD approaches
leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms
existing methods, achieving state-of-the-art OoDD performance and leading ID
accuracy.
Figures & Tables
Unlock access to paper figures and tables to enhance your research experience.