Paper ID: 2504.16778 • Published Apr 23, 2025

Evaluation Framework for AI Systems in "the Wild"

Sarah Jabbour, Trenton Chang, Anindya Das Antar, Joseph Peper, Insu Jang, Jiachen Liu, Jae-Won Chung, Shiqi He, Michael...
TL;DR
Get AI-generated summaries with premium
Get AI-generated summaries with premium
Generative AI (GenAI) models have become vital across industries, yet current evaluation methods have not adapted to their widespread use. Traditional evaluations often rely on benchmarks and fixed datasets, frequently failing to reflect real-world performance, which creates a gap between lab-tested outcomes and practical applications. This white paper proposes a comprehensive framework for how we should evaluate real-world GenAI systems, emphasizing diverse, evolving inputs and holistic, dynamic, and ongoing assessment approaches. The paper offers guidance for practitioners on how to design evaluation methods that accurately reflect real-time capabilities, and provides policymakers with recommendations for crafting GenAI policies focused on societal impacts, rather than fixed performance numbers or parameter sizes. We advocate for holistic frameworks that integrate performance, fairness, and ethics and the use of continuous, outcome-oriented methods that combine human and automated assessments while also being transparent to foster trust among stakeholders. Implementing these strategies ensures GenAI models are not only technically proficient but also ethically responsible and impactful.

Figures & Tables

Unlock access to paper figures and tables to enhance your research experience.