Deep Unfolding
Deep unfolding leverages the strengths of both model-based and data-driven approaches by unfolding iterative optimization algorithms into deep neural networks. Current research focuses on applying this technique to diverse inverse problems, including image and video reconstruction, hyperspectral imaging, and robotic manipulation, often employing architectures based on Alternating Direction Method of Multipliers (ADMM) or proximal gradient descent. This approach offers improved interpretability and efficiency compared to purely data-driven methods, leading to advancements in various fields ranging from medical imaging to computer vision and beyond.
Papers
April 30, 2022
April 28, 2022
March 13, 2022
March 5, 2022
February 14, 2022
February 12, 2022
January 20, 2022
January 15, 2022