GAN Inversion
GAN inversion aims to map real-world images into the latent space of a pre-trained Generative Adversarial Network (GAN), enabling image manipulation through latent code editing. Current research focuses on improving the fidelity of image reconstruction while maintaining the editability of the latent codes, often employing techniques like dual encoders, diffusion models, and recurrent networks within StyleGAN and other 3D-aware GAN architectures. This field is significant because it allows for high-quality image editing and generation tasks across diverse applications, including face manipulation, 3D reconstruction, and anomaly detection, by leveraging the powerful generative capabilities of GANs.
Papers
NeRFInvertor: High Fidelity NeRF-GAN Inversion for Single-shot Real Image Animation
Yu Yin, Kamran Ghasedi, HsiangTao Wu, Jiaolong Yang, Xin Tong, Yun Fu
3D GAN Inversion with Facial Symmetry Prior
Fei Yin, Yong Zhang, Xuan Wang, Tengfei Wang, Xiaoyu Li, Yuan Gong, Yanbo Fan, Xiaodong Cun, Ying Shan, Cengiz Oztireli, Yujiu Yang