GAN Model
Generative Adversarial Networks (GANs) are a class of deep learning models designed to generate new data instances that resemble a training dataset. Current research focuses on improving GAN training stability, addressing issues like mode collapse, and enhancing controllability over generated outputs, often through integration with other models like diffusion models or reinforcement learning. Applications span diverse fields, including image generation and editing, drug discovery, and data augmentation for tasks where real data is scarce or expensive to obtain, significantly impacting various scientific domains and practical applications. Recent work also highlights the exploration of alternative training methods to improve efficiency and quality, moving beyond traditional adversarial training.
Papers
JoIN: Joint GANs Inversion for Intrinsic Image Decomposition
Viraj Shah, Svetlana Lazebnik, Julien Philip
Progressive Learning of 3D Reconstruction Network from 2D GAN Data
Aysegul Dundar, Jun Gao, Andrew Tao, Bryan Catanzaro
Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold
Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, Christian Theobalt