Generated Text
Generated text research focuses on understanding and mitigating the challenges posed by increasingly sophisticated large language models (LLMs) producing human-quality text. Current efforts concentrate on detecting machine-generated text, often employing techniques like latent-space analysis and fine-tuned transformer models (e.g., RoBERTa, DeBERTa) to identify subtle differences in writing style and structure between human and AI-generated content. This field is crucial for addressing concerns about misinformation, plagiarism, and authenticity, impacting various domains from education and journalism to legal and scientific publishing.
Papers
October 22, 2022
March 17, 2022
March 2, 2022
February 14, 2022
February 4, 2022
January 11, 2022