Multi Organ Segmentation
Multi-organ segmentation in medical images aims to automatically identify and delineate multiple organs within a single scan, improving diagnostic accuracy and treatment planning. Current research heavily focuses on developing robust deep learning models, employing architectures like U-Nets, Transformers, and hybrid CNN-Transformer approaches, often incorporating attention mechanisms and self-supervised learning to address challenges like data scarcity and class imbalance. These advancements are crucial for improving the efficiency and accuracy of medical image analysis, ultimately leading to better patient care and accelerating medical research.
Papers
Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior
Young Seok Jeon, Hongfei Yang, Huazhu Fu, Mengling Feng
Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding
Zhiheng Cheng, Qingyue Wei, Hongru Zhu, Yan Wang, Liangqiong Qu, Wei Shao, Yuyin Zhou