Multilingual Neural Machine Translation
Multilingual neural machine translation (MNMT) aims to build single models capable of translating between numerous language pairs, improving efficiency and resource allocation compared to training separate bilingual models. Current research focuses on optimizing model architectures (like Mixture-of-Experts) and training strategies to address challenges such as parameter inefficiency, negative interactions between languages during fine-tuning, and the "off-target" problem (incorrect language output). These advancements are significant because they enable more efficient and effective translation for low-resource languages and improve the overall quality and robustness of machine translation systems.
Papers
HLT-MT: High-resource Language-specific Training for Multilingual Neural Machine Translation
Jian Yang, Yuwei Yin, Shuming Ma, Dongdong Zhang, Zhoujun Li, Furu Wei
UM4: Unified Multilingual Multiple Teacher-Student Model for Zero-Resource Neural Machine Translation
Jian Yang, Yuwei Yin, Shuming Ma, Dongdong Zhang, Shuangzhi Wu, Hongcheng Guo, Zhoujun Li, Furu Wei