Multilingual Pre Trained Language Model
Multilingual pre-trained language models (mPLMs) aim to build language understanding capabilities across many languages simultaneously, leveraging massive multilingual datasets for training. Current research focuses on improving cross-lingual transfer, particularly for low-resource languages, through techniques like prompt engineering, data augmentation (including transliteration), and model adaptation methods such as adapter modules and knowledge distillation. These advancements are significant because they enable more efficient and effective natural language processing applications across a wider range of languages, impacting fields like machine translation, information retrieval, and cross-lingual understanding.
Papers
MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages
Cheikh M. Bamba Dione, David Adelani, Peter Nabende, Jesujoba Alabi, Thapelo Sindane, Happy Buzaaba, Shamsuddeen Hassan Muhammad, Chris Chinenye Emezue, Perez Ogayo, Anuoluwapo Aremu, Catherine Gitau, Derguene Mbaye, Jonathan Mukiibi, Blessing Sibanda, Bonaventure F. P. Dossou, Andiswa Bukula, Rooweither Mabuya, Allahsera Auguste Tapo, Edwin Munkoh-Buabeng, victoire Memdjokam Koagne, Fatoumata Ouoba Kabore, Amelia Taylor, Godson Kalipe, Tebogo Macucwa, Vukosi Marivate, Tajuddeen Gwadabe, Mboning Tchiaze Elvis, Ikechukwu Onyenwe, Gratien Atindogbe, Tolulope Adelani, Idris Akinade, Olanrewaju Samuel, Marien Nahimana, Théogène Musabeyezu, Emile Niyomutabazi, Ester Chimhenga, Kudzai Gotosa, Patrick Mizha, Apelete Agbolo, Seydou Traore, Chinedu Uchechukwu, Aliyu Yusuf, Muhammad Abdullahi, Dietrich Klakow
mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models
Peiqin Lin, Chengzhi Hu, Zheyu Zhang, André F. T. Martins, Hinrich Schütze
mPMR: A Multilingual Pre-trained Machine Reader at Scale
Weiwen Xu, Xin Li, Wai Lam, Lidong Bing